From random matrices to random analytic functions

نویسنده

  • Manjunath Krishnapur
چکیده

Singular points of random matrix-valued analytic functions are a common generalization of eigenvalues of random matrices and zeros of random polynomials. The setting is that we have an analytic function of z taking values in the space of n× n matrices. Singular points are those (random) z where the matrix becomes singular, that is, the zeros of the determinant. This notion was introduced in the Ph.D thesis [10] of the author, where some basic facts were found. Of course, singular points are just the zeros of the (random analytic function) determinant, so in what sense is this concept novel? In case of random matrices as well as random analytic functions, the following features may be observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of Random Analytic Functions

Zeros of Random Analytic Functions The dominant theme of this thesis is that random matrix valued analytic functions, generalizing both random matrices and random analytic functions, for many purposes can (and perhaps should) be effectively studied in that level of generality. We study zeros of random analytic functions in one complex variable. It is known that there is a one parameter family o...

متن کامل

Renormalized energy concentration in random matrices

We define a “renormalized energy” as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of [SS1, SS3]. Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a...

متن کامل

NON-HERMITEAN RANDOM MATRIX THEORY: method of hermitean reduction

We consider random non-hermitean matrices in the large N limit. The power of analytic function theory cannot be brought to bear directly to analyze non-hermitean random matrices, in contrast to hermitean random matrices. To overcome this difficulty, we show that associated to each ensemble of nonhermitean matrices there is an auxiliary ensemble of random hermitean matrices which can be analyzed...

متن کامل

Random walks veering left ∗

We study coupled random walks in the plane such that, at each step, the walks change direction by a uniform random angle plus an extra deterministic angle θ. We compute the Hausdorff dimension of the θ for which the walk has an unusual behavior. This model is related to a study of the spectral measure of some random matrices. The same techniques allow to study the boundary behavior of some Gaus...

متن کامل

M ar 2 00 8 RECTANGULAR RANDOM MATRICES , RELATED CONVOLUTION

We characterize asymptotic collective behavior of rectangular random matrices, the sizes of which tend to infinity at different rates. It appears that one can compute the limits of all non commutative moments (thus all spectral properties) of the random matrices we consider because, when embedded in a space of larger square matrices, independent rectangular random matrices are asymptotically fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008